skip to Main Content

cosine is world leading in the development of novel high energy optics technology. The Silicon Pore Optics technology (SPO), developed by cosine in cooperation with the European Space Agency, offers significant advantages for a variety of applications.

Silicon Pore Optics – Silicon wafer bonding

Bonding and stacking many silicon wafers on top of each other is a technology initially developed by cosine in cooperation with ESA for a novel type of light weight X-ray lens. Our specialized fully automated stacking robots can elastically deform and directly bond tens of patterned silicon wafers with micro-meter accuracy on top of each other, creating many potential shapes and structures for applications such as X-ray imaging and beyond. The silicon plates can be coated, grooved, wedged and structured with many different patterns. The stacking robots have been developed in house and combine standard wafer industry technology with novel metrology solutions to achieve high yields at very high accuracy.

Silicon Laue Lens components – optics for very hard X-rays and Gamma rays

In the very high energy range, one cannot use reflective surfaces to focus soft gamma rays, as the maximum reflective angle becomes too small. In this case using a Laue lens is the preferred solution. Using Bragg reflection and bent silicon crystals, imaging can be achieved where it is not otherwise possible. Laue lenses can be made using an SPO based technique, where bent and wedged single crystal silicon plates are stacked.

High-energy optics simulation – quickly determine realistic system performance and features

The high energy optics software simulates X-ray and gamma-ray imaging systems based on grazing incidence scattering using the Monte Carlo technique. The software offers control of the surface properties and scattering processes at each individual interaction. Additionally, the geometry of the surfaces and the imaging system, as well as the incoming beam and the resulting images patterns on the detector surface are fully under control of the user.

Detecting high energy and other radiation

cosine has experience in the detection of high energy radiation in all its forms. Gamma ray and X-ray detection components, complete with computational parts (back end electronics, small sized full computer components capable of space exposure) can all be obtained through cosine. Our expertise includes energy sensing detectors in the X-ray to gamma ray range as well as the EP12, which is a very small back-end system capable of simultaneously managing the data of up to 6 sensors at once, including advanced measurements such as energy sensing. This allows for a combination of multiple different kinds of measurements to be taken simultaneously.

cosine | measurement systems Boudewijn Zeijlmans
Want to know more? Let us know!

Max Collon